首页> 外文OA文献 >Using Network Component Analysis to Dissect Regulatory Networks Mediated by Transcription Factors in Yeast
【2h】

Using Network Component Analysis to Dissect Regulatory Networks Mediated by Transcription Factors in Yeast

机译:使用网络成分分析解剖酵母中转录因子介导的调控网络。

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Understanding the relationship between genetic variation and gene expression is a central question in genetics. With the availability of data from high-throughput technologies such as ChIP-Chip, expression, and genotyping arrays, we can begin to not only identify associations but to understand how genetic variations perturb the underlying transcription regulatory networks to induce differential gene expression. In this study, we describe a simple model of transcription regulation where the expression of a gene is completely characterized by two properties: the concentrations and promoter affinities of active transcription factors. We devise a method that extends Network Component Analysis (NCA) to determine how genetic variations in the form of single nucleotide polymorphisms (SNPs) perturb these two properties. Applying our method to a segregating population of Saccharomyces cerevisiae, we found statistically significant examples of trans-acting SNPs located in regulatory hotspots that perturb transcription factor concentrations and affinities for target promoters to cause global differential expression and cis-acting genetic variations that perturb the promoter affinities of transcription factors on a single gene to cause local differential expression. Although many genetic variations linked to gene expressions have been identified, it is not clear how they perturb the underlying regulatory networks that govern gene expression. Our work begins to fill this void by showing that many genetic variations affect the concentrations of active transcription factors in a cell and their affinities for target promoters. Understanding the effects of these perturbations can help us to paint a more complete picture of the complex landscape of transcription regulation. The software package implementing the algorithms discussed in this work is available as a MATLAB package upon request.
机译:了解遗传变异与基因表达之间的关系是遗传学的核心问题。利用来自ChIP芯片,表达和基因分型阵列等高通量技术的数据,我们不仅可以识别关联,还可以了解遗传变异如何干扰潜在的转录调控网络以诱导差异基因表达。在这项研究中,我们描述了一个简单的转录调控模型,其中基因的表达完全由两个特性来表征:活性转录因子的浓度和启动子亲和力。我们设计了一种扩展网络组件分析(NCA)的方法,以确定单核苷酸多态性(SNP)形式的遗传变异如何干扰这两个属性。将我们的方法应用于酿酒酵母的隔离种群中,我们发现了位于调节热点的反式SNP的统计学显着实例,这些SNP扰乱了目标启动子的转录因子浓度和亲和力,从而引起了全球差异表达和顺式作用的遗传变异,从而扰乱了启动子转录因子在单个基因上引起局部差异表达的亲和力。尽管已发现许多与基因表达相关的遗传变异,但尚不清楚它们如何干扰控制基因表达的潜在调控网络。我们的工作通过显示许多遗传变异影响细胞中活性转录因子的浓度及其对靶标启动子的亲和力来填补这一空白。了解这些扰动的影响可以帮助我们更全面地描绘转录调控的复杂情况。根据要求,可将实现本工作中讨论的算法的软件包作为MATLAB软件包提供。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号